Manajemen Limbah Medis

DEFINISI

Sebenarnya tidak ada definisi yang pasti dan universal tentang limbah medis. Oleh sebab itu banyak sekali istilah yang digunakan untuk limbah jenis ini, mulai dari limbah medis, limbah rumah sakit, limbah infeksius, limbah fasilitas kesehatan dan regulated medical waste.

Berdasarkan US-EPA, limbah medis adalah limbah yang dihasilkan dari fasilitas medis: rumah sakit, klinik, praktek dokter/dokter gigi, bank darah, rumahsakit/klinik khusus hewan, lembaga riset medis dan laboratorium medis. Sedangkan menurut Medical Waste Tracking Act 1988, limbah medis adalah semua limbah padat yang dihasilkan dari kegiatan diagnosa, pengobatan atau imunisasi manusia dan hewan; riset medis; dan produksi atau pengujian material biologis.

Karena banyaknya pengertian yang beredar tentang limbah jenis ini, maka untuk lebih memudahkan dilakukan klasifikasi sebagai berikut:

  • Limbah rumah sakit atau limbah fasilitas kesehatan adalah semua limbah, baik biologis maupun non-biologis, yang dibuang oleh suatu fasilitas kesehatan dan tidak ditujukan untuk penggunaan lebih lanjut.
  • Limbah medis adalah material yang ditimbulkan dari hasil kegiatan diagnosa pasien, pengobatan atau pemberian imunisasi kepada manusia atau hewan.
  • Limbah infeksius atau regulated medical waste adalah limbah medis yang dapat menyebarkan wabah infeksi.

Catatan: Kongres Amerika Serikat dan US-EPA menggunakan istilah regulated medical waste untuk limbah infeksius.

CONTOH LIMBAH MEDIS

  • Perban bekas membalut luka/darah
  • Peralatan bekas kultur
  • Sarung tangan bedah bekas pakai
  • Instrumen bedah bekas pakai
  • Jarum suntik bekas pakai
  • Semua peralatan untuk penanaman kultur
  • Organ tubuh sisa pembedahan

BIOHAZARD

Adalah substansi biologis yang mengandung bahaya yang dapat mengancam makhluk hidup terutama manusia. Termasuk di dalamnya antara lain limbah medis, contoh mikroorganisme, virus atau racun yang berasal dari sumber biologis yang berefek pada manusia, serta substansi yang berbahaya bagi hewan.

KLASIFIKASI BIOHAZARD

  • Kategori A, UN2814 – substansi infeksius yang berefek kepada manusia dan hewan. Merupakan substansi infeksius yang dapat menyebabkan disabilitas permanen atau mengancam nyawa atau penyakit fatal pada manusia atau hewan ketika terpapar.
  • Kategori B, UN2900 – substansi infeksius yang hanya berefek kepada hewan. Merupakan substansi infeksius yang tidak dapat menyebabkan disabilitas permanen atau mengancam nyawa ataupenyakit fatal pada manusia atau hewan ketika terpapar.
  • Kategori B, UN3373 – substansi biologis yang digunakan untuk tujuan diagnosa dan investigasi.
  • Regulated Medical Waste, UN3291 – limbah atau material yang dapat digunakan kembali yang dihasilkan dari pengobatan medis terhadap manusia atau hewan, atau dari riset biomedis, termasuk produksi dan pengujian produk biologis.

TINGKATAN BIOHAZARD

  • Tingkat 1 – bakteri dan virus beberapa kultursel dan bakteri non-infeksius. Tindakan pencegahan pada tingkat ini tergolong minimal, hanya meliputi sarung tangan dan pelindung wajah.
  • Tingkat 2 – bakteri dan virus yang menyebabkan penyakit ringan pada manusia, atau yang sulit dimatikan dengan aerosol pada prosedur laboratorium.
  • Tingkat 3 – bakteri dan virus yang dapat menyebabkan penyakit berat dan fatal pada manusia, tetapi sudah ada vaksin atau pengobatannya.
  • Tingkat 4 – bakteri dan virus yang dapat menyebabkan penyakit berat dan fatal pada manusia dan belum adavaksin atau pengobatannya.

REGULASI MANAJEMEN LIMBAH MEDIS DI INDONESIA

  • Undang-undang No.32/2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup.
  • Peraturan Pemerintah No. 18/1999 tentang Pengelolaan Limbah B3.
  • Peraturan Pemerintah No. 85/1999 tentang Revisi Beberapa Pasal PP 18/1999.
  • Peraturan Menteri Lingkungan Hidup No. 14/2013 tentang Simbol dan Label Limbah B3.
  • Peraturan MenteriKesehatan No. 1204/2004 tentang Persyaratan Kesehatan Lingkungan Rumah Sakit.
  • Keputusan Kepala BAPEDAL Kep-01/BAPEDAL/09/1995 tentang Tata Cara dan Persyaratan Teknis Penyimpanan dan Pengumpulan Limbah B3.
  • Keputusan Kepala BAPEDAL Kep-02/BAPEDAL/09/1995 tentang Dokumen Limbah B3.
  • Keputusan Kepala BAPEDAL Kep-03/BAPEDAL/09/1995 tentang Persyaratan Teknis Pengolahan Limbah B3.

PENGEMASAN

  • Semua limbah medis hanya boleh dibuang menggunakan kemasan khusus berlogo biohazard.
  • Limbah medis tajam seperti jarum, pisau bedah, alat suntik (dengan atau tanpa jarum) dan benda medis lainnya yang dapat menyayat dan menusuk kulit, serta limbah infeksius seperti sisa preparat dan kultur bakteri harus dikemas menggunakan kemasan yang keras, tahan pecah, tahan tusuk, anti bocor dan kedap air.
  • Limbah infekisus seperti kapas, masker dan sarung tangan dapat dibuang menggunakan plastic bag.
  • Batas pengisian maksimal adalah ¾ penuh.

PENGUMPULAN, PENYIMPANAN DAN PENGANGKUTAN

  • Pengumpulan limbah medis harus menggunakan troli tertutup.
  • Pengumpulan limbah medis berupa bendatajam (scalpel, jarum, kaca preparat) dikumpulkan ke dalam suatu wadah khusus tanpa memperhatikan terkontaminasi atau tidaknya.
  • Penyimpanan limbah medis harus sesuai dengan iklim tropis, yaitu paling lama 48 jam pada musim hujan dan 24 jam pada musim kemarau.
  • Pengangkutan limbah medis keluar dari fasilitas medis harus menggunakan kendaraan khusus.

PENGOLAHAN

  • Sterilisasi panas kering dengan menggunakan oven Poupinel pada suhu 160 derajat Celsius selama 120 menit atau pada suhu 170 derajat Celsius selama 60 menit.
  • Sterilisasi panas basah dengan menggunakan autoclave pada suhu 121 derajat Celsius selama 30 menit.
  • Sterilisasi dengan menggunakan bahan kimia berupa gas ethylene oxide pada suhu 50-60 derajat Celsius selama 3-8 jam, atau dengan menggunakan glutaraldehyde selama 30 menit.
  • Disinfeksi
  • Degradasi kimia
  • Insinerasi suhu tinggi
  • Enkapsulasi
  • Inersisasi

Catatan:

  • Bagi fasilitas medis yang memiliki insinerator di lingkungannya harus membakar limbah medisnya selambat-lambatnya 24 jam.
  • Bagi fasilitas medis yang tidak memiliki insinerator di lingkungannya, maka limbah medisnya harus diolah melalui kerjasama dengan fasilitas medis lain atau pihak lain yang memiliki izin pengoperasian insinerator untuk diolah selambat-lambatnya 24 jam jika disimpan pada suhu ruang.

PENGGUNAAN KEMBALI

  • Limbah medis yang akan digunakan kembali harus melalui proses sterilisasi terlebih dahulu. Untuk mengetahui efektivitas sterilisasi panas harus menggunakan tes Bacillus stearothermophillus, sedangkan untuk mengetahui efektivitas sterilisasi bahan kimia harus menggunakan tes Bacillus subtilis.
  • Limbah medis yang dapat digunakan kembali meliputi scalpel, jarum hipodermik, syringe dan botol gelas.

Catatan:

Limbah jarum hipodermik TIDAK dianjurkan untuk digunakan kembali. Apabila fasilitas medis tidak mempunyai jarum sekali pakai, maka limbah jarum hipodermik dapat digunakan kembali setelah melalui sterilisasi.

Treatibility Trial for Stabilization of Dry Flux Waste

Overview:

The aim of this trial was to determine the ratio of stabilization prescription to treat dry flux waste generated from a musical instrument manufacturer which leached out high level of boron, i.e. 1301 ppm; while the limit is only 500 ppm according to the Indonesian environmental regulations. Stabilization is required in response to the regulations which restrict specific categories of waste from hazardous waste landfills unless the wastes are pretreated to a minimum leachibility standard. The intent is to reduce the leachibility of hazardous constituents as measured by the TCLP. Stabilization process is effective in treating a variety of difficult to manage waste materials for reuse or disposal. This method has been identified as the Best Demonstrated Available Technology (BDAT) for treating a wide range of Resource Conservation and Recovery Act (RCRA) non-wastewater hazardous waste categories.

Flux is a chemical cleaning agent, flowing agent or purifying agent. It is usually used in the field of metallurgy in both extractive metallurgy and metal joining (welding, brazing and soldering). In soldering of metals, flux serves a threefold purpose: it removes oxidation from the surfaces to be soldered; it seals out air thus preventing further oxidation; and by facilitating amalgamation improves wetting characteristics of the liquid solder. Common fluxes are: ammonium chloride or rosin, hydrochloric acid, zinc chloride and borax.

Experiment:

Method for Mixing Dry Flux and Pozzolanic

The first step of this trial was by mixing the waste with stabilization reagents. Water was then added for the stabilization reagents to react, performing a cementation reaction. All the mixing was performed by hand. After all the mixing procedures, the waste was then placed into a plastic bottle and was left undisturbed and let to dry. After a period of time, TCLP test was conducted to observe the leaching concentration. In this trial, three stabilization reagents were used, i.e. fly ash, Portland cement and lime.

Measurement of Leaching Concentration

According to the regulation of the State Ministry of Environment – Republic of Indonesia, sulfuric acid pH of 5 was used as the extraction fluid on the TCLP with liquid to solid ratio of 20:1. The sample was extracted for 16-20 hours on an agitation tumbler. The TCLP extract was then separated from the solid phase by filtering through a 0.6 micron filter.

Analysis of Leaching Elements

The leaching concentration of boron was analyzed by ICP-OES method.

Waste Characteristics

The waste to be treated on this case was flux generated from soldering process on a musical instrument manufacturer. The condition of the waste was already cured and attached on the surface of the product. The finger print test results showed that the physical appearance of the waste was broken white homogeneous lumps, odorless, not detected sulfide, cyanide, oxidizer, ammonia and phenol, at/below background level of radioactivity and insoluble in water. The metal on waste analysis results showed that the waste was containing 45190 ppm of boron; while the TCLP test results confirmed that the waste was leaching out 1301 ppm of boron.

Results and Discussion:

Concerning its generating process that was soldering and the physical appearance of the waste that is broken white, flux on this case is suspected to be a mixture of borax and ammonium chloride as is common for soldering. This has been confirmed via both on waste analysis and TCLP test results shown on the Table 2 and Table 3. The high concentrations of boron shown on the TCLP pure waste results were caused by the low pH level. In order to be able to reduce the leaching concentration of this metal, the pH level must be increased to the alkaline condition.

Stabilization with fly ash and Portland cement

A pozzolanic compound composed of fly ash and Portland cement is the common reagents used for stabilization process. A combination of these reagents with ratios of 0.15 of fly ash and 0.10 of Portland cement has been proven in the stabilization of so many hazardous waste. But on this case, this prescription was unable to reduce the leaching concentrations of boron, whereas the desired alkaline condition was not obtained and the concentration of boron remained high even after doubled up the ratio. The results are shown on the following table:

FA Ratio

PC Ratio

pH

Boron (ppm)

0.15

0.10

6.33

1378

0.30

0.20

6.59

1246

Table 1. TCLP stabilized waste results with fly ash and Portland cement

Stabilization with fly ash, Portland cement, lime and filler

From the results presented above, reducing the leaching concentrations of boron simultaneously with only fly ash and Portland cement was seemed to be difficult; therefore led to the consideration of adding other reagents, i.e. lime and filler (sand) on this trial referred to the similar research case on Oji Paper Co. Ltd in Japan at 2006 performed by Makoto Iwasaki, et al, which focused on the leaching of fluorine and boron on coal ash. Lime was selected due to its ability to maintain the alkaline condition, as well as from the economical and general usage point of view. The presence of lime was also expected to form more ettringite during the cement swelling, which has been reported to be effective for reducing the leaching concentration of boron (J.K. Solem-Tishmack et al, 1995). Filler (sand) was used as binder to bind the aggregate particles together, preventing the entrance of moisture. The results are shown on the following table:

FA Ratio

PC Ratio

Lime Ratio

Filler Ratio

pH

Boron (ppm)

0.15

0.10

1.00

0.50

13.00

603.6

0.15

0.10

1.50

0.50

13.52

245.2

Table 2. TCLP stabilized waste results with fly ash, Portland cement, lime and filler

Table 2 clearly shows that the presence of lime in every prescription, combined with the existing ratios of fly ash and Portland cement, was able to reduce the leaching concentration of boron significantly. With the ratios of 0.15 of fly ash, 0.10 of Portland cement, 1.50 of lime and 0.50 of filler, the prescription was able to reduce the concentration of boron on the leaching from 1301 ppm to 245.2 ppm.

This prescription indeed resulted extreme pH levels out of the standard range (i.e. 9-11) which was predicted would be affecting the quality of leachate after the treated waste been disposed to the secure landfill, i.e. causing the significant level of TDS due to the precipitation of metal ions as carbonates and hydroxides. As alternative to encounter the pH level of the treated waste from exceeding the limits, the waste can also be treated by double encapsulation in concrete method followed by disposal into class 1 secured landfill. In this method, the waste will not undergo any chemical reactions but isolated inside a massive solid mass hence will not be migrating to the environment.

Conclusions:

  1. The prescription consisting of fly ash, Portland cement, lime and filler was able to reduce the leaching concentration of boron below the Indonesian environmental standard (i.e. 500 ppm).
  2. The ettringite structure was formed on this prescription, which might be related to the reducing of the leaching concentration of boron.
  3. The optimum ratios were obtained by 0.15 of fly ash, 0.10 of Portland cement, 1.50 of lime and 0.50 of filler.
  4. As alternative the waste can also be treated by double encapsulation in concrete method to encounter the pH level of the treated waste from exceeding the limits.

References:

  1. Chou, S.T. and L.T. Fan, 1995, “Stabilization and Solidification”, Chemical Engineering Department – Kansas State University, Kansas.
  2. Flux (Metallurgy). In Wikipedia. Retrieved August 22, 2013, from http://en.wikipedia.org/wiki/flux_(metallurgy).
  3. Iwasaki, Makoto et al, 2006, “Prevention of Elements Leaching from Coal Ash by Adding Fixation Chemicals”, Research and Development Department – Oji Paper Co. Ltd, Tokyo.
  4. Lear, Paul and Jesse Conner, “Stabilization Reagent Testing”, GenevaResearchCenter – Chemical Waste Management Inc., Illinois.
  5. Republic of Indonesia, 1999, Government Regulations No. 85 Year 1999: Hazardous Waste Management.
  6. Solem-Tishmack, J.K. et al, 1995, “High Calcium Coal Combustion By-products: Engineering Properties, Ettringite Formation and Potential Application in Solidification and Stabilization of Selenium and Boron”, Cement and Concrete Research, 125(3) 658.
  7. US EPA, 1993, “Technical Resource Document: Solidification/Stabilization and its Application to Waste Materials”, Office of Research and Development, Washington, D.C.

Medical and Infectious Waste

Medical waste: any solid waste which is generated in the diagnosis, treatment (e.g. provision of medical services) or immunization of human beings or animals, in research pertaining thereto, or in the production or testing of biologicals (US-EPA).

Infectious agent: any organism (such as virus or bacteria) that is capable of being communicated by invasion or multiplication in body tissues and capable of causing disease or adverse health impacts in humans (US-EPA).

Infectious waste: waste that contains pathogens with sufficient virulence and quantity such that exposure to the wastes could result in infectious diseases.

However, currently there is no definitive quantitative analysis that can be used to determine whether or not a waste is infectious. The characteristic of infectious potential is therefore based on principles of disease transmission. The process of disease transmission can be conceptualize as a series of six links, with each link representing an essential step in the transfer of an infectious agent from one susceptible host to the next. If a break occurs in any of the links along the chain, the process of disease transmission is inhibited. The six links are as follows:

  1. The presence of a sufficient quantity  of an infectious agent.
  2. The existence of a favourable environment for survival of infectious agents.
  3. A mode of escape for infectious agents.
  4. An infectious mode of transmission.
  5. An infectious route of entry.
  6. A susceptible host.

Four main transmission modes of infection (US Department of Health and Human Services):

  1. Direct transmission occurs when there is contact between an agent’s source and susceptible host. Direct transmission can occur through direct contact or droplet spray.
  2. Airborne transmission occurs when the etiologic agent is contained in or on relatively small particles that remain suspended in air for long periods of time.
  3. Vehicle-borne transmission occurs when an infectious agent is transported from its source to a susceptible host by contaminated materials or objects (indirect contact).
  4. Vector-borne transmission occurs when a vector, most commonly insect, carries the agent on or in its body, or the agent develops in the vector.

Types of Medical Waste

The rationale behind the definition of what constitutes medical waste is based on two sets of criteria:

1. The potential of the waste to transmit infection. These wastes, by virtue of their characteristics, are capable of preserving the chain of disease transmission. These wastes are universally handled as medical wastes, regardless of their source, because:

  1. The infectious potential of a waste cannot necessarily be determined by its appearance.
  2. The particular source of the item and/or its infectious nature may not be identifiable.
  3. It is impractical and infeasible to test each item for its pathogen content (i.e. type and quantity).

These types of medical waste fall into seven categories as follows:

  1. Sharps that have been used in animal or human patient care or treatment or in medical, research or industrial laboratories. Includes hypodermic needles, syringes, scalpel blades, blood specimen tubes, pasteur  pipettes and broken glass that have been exposed to infectious agents.
  2. Cultures and stocks of infectious agents and associated biologicals. Includes specimen cultures from medical and pathological laboratories; cultures and stocks of infectious agents from research and industrial laboratories; waste from the production of biologicals; discarded live and attenuated vaccines; and culture dishes and devices used to transfer, inoculate and mix cultures.
  3. Bulk human blood and blood products. Liquid waste human blood, products of blood, items saturated and with the potential for dripping blood, serum, plasma and other blood components.
  4. Pathological wastes. Human tissues, organs, body parts and body fluids that are removed during surgery and post mortem procedures, with the exception of teeth, faeces, excreta and corpses and body parts intended for interment or cremation.
  5. Isolation wastes. Includes wastes contaminated with blood, excretions, exudate or secretions from sources isolated to protect others from highly communicable infectious disease which are identified as viruses.
  6. Animal waste. Contaminated animal carcasses, body parts, fluids and bedding of animals that have been afflicted with suspected zoonotic disease or purposely infected with agents infective to humans during research, in the production of biologicals or the in vivo testing of pharmaceuticals.
  7. Unused sharps. Hypodermic needles, suture needles, syringes, scalpel blades. This category is included because of the risk of the item having been used without the handlers’ knowledge and the added potential for illicit use if these items are disposed as solid waste. In addition, unused sharps have the potential to causing physical injury from improper handling.

2. Wastes which possess a risk to public health or the environment for reasons other than infectious potential. These wastes fall into three additional categories as follows:

  1. Low level radioactive waste. From administering radiopharmaceuticals and performing nuclear medicine procedures and radioimmunology procedures. These wastes, such as radioactive sharps, are not under the regulations of nuclear agency/commission.
  2. Antineoplastic (cytotoxic, cytostatic) drugs. Trace contaminated materials and contaminated human excreta that are not handled as hazardous waste.
  3. Small volume of chemical hazardous waste. These wastes are products of a process or operation involving the use of hazardous chemicals.

Items That Are Not Medical Waste

According to the principles of infectious disease transmission, minimally soiled items in contact with infectious agents are probably not capable of infectious disease transmission because the potentially infectious materials will be contained or confined in the waste materials. If the items become saturated with blood, excretions, exudate or secretions containing a sufficient number of infectious agents, however, they would then be similar to material in the cultures and stocks, bulk human blood and blood products and animal waste categories and capable of infectious disease transmission, provided an appropriate portal of entry is present in a susceptible host (US Department of Health and Human Services).

Generation of Medical Wastes

There are many sources of medical waste with a wide variation in the amount of waste produced by each type of generator. The range of potential generators includes:

  1. Hospitals: general medical and surgical, psychiatric, tuberculosis, other specialty (OB/GYN, eye, ENT, rehabilitation)
  2. Intermediate care facilities: nursing homes, in-patient care facilities for the developmentally disabled
  3. Clinics: chronic dialysis, free clinics, community, employee, surgical, urgent care, abortion, drug rehabilitation, health maintenance organization
  4. Physician offices: general and family practice, internal medicine, paediatrics, OB/GYN, ophthalmology, orthopaedic surgery, general surgery, dermatology, psychiatry, otorhinolaryngology, urological surgery, cardiovascular disease, neurology
  5. Dental offices
  6. Laboratories: medical, research, industrial, commercial diagnostic, biologics manufacturing, medicinal chemicals and botanical products, pharmaceutical preparations
  7. Funeral homes
  8. Veterinarians
  9. Agricultural
  10. Blood banks
  11. Animal care: shelters, fur farms, breeders, experimentation units
  12. Emergency medical services: ambulance service
  13. Hospices
  14. Household/home health care: health care providers, self care
  15. Health units in industry, schools, correctional facilities, fire and rescue services
  16. Medical and nursing schools
  17. Illicit drug users

Ekstraksi Superkritis

Ekstraksi superkiritis merupakan salah satu metode operasi ekstraksi dengan menggunakan solven berupa fluida superkritis, yaitu fluida yang kondisinya berada di atas temperatur dan tekanan kritis. Temperatur kritis adalah suhu tertinggi yang dapat mengubah fase gas suatu zat menjadi fase cair dengan cara menaikkan tekanan. Sedangkan tekanan kritis adalah tekanan tertinggi yang dapat mengubah fase cair suatu zat menjadi fase gas dengan cara menaikkan temperatur. Pada kondisi ini fluida memiliki sifat di antara cairan dan gas. Metode ini memiliki beberapa kelebihan, antara lain:

  1. Kekuatan solven dapat diatur sesuai keperluan dengan mengatur kondisi operasinya.
  2. Daya larut solven tinggi karena bersifat seperti cairan.
  3. Viskositas solven rendah karena bersifat seperti gas, sehingga koefisien perpindahan massanya tinggi.
  4. Pemisahan kembali solven dari ekstrak cukup cepat dan sempurna karena pada keadaan normal solven tersebut berupa gas, sehingga dengan penurunan tekanan solven otomatis akan keluar sebagai gas.
  5. Dapat menggunakan solven berupa fluida yang tidak merusak lingkungan dan tidak mudah terbakar.
  6. Difusi dalam padatan dapat berlangsung cepat.
  7. Temperatur operasi bisa rendah sekalipun tekanannya tinggi.

Salah satu fluida yang sering dipakai sebagai solven dalam ekstraksi superkritis adalah gas CO2, yang memiliki temperatur kritis 31,3 derajat Celcius dan tekanan kritis 74 atm. Dengan menggunakan CO2 sebagai solven, ekstraksi superkritis dapat dijalankan pada suhu rendah dan tekanan yang tidak terlalu tinggi. Keuntungan lain adalah kita tidak perlu membuat CO2 melainkan cukup menyaringnya dari udara sekitar.

Sebagai fluida superkritis, CO2 telah cukup banyak dimanfaatkan di bidang penelitian dan industri. Contohnya adalah dalam proses ekstraksi maupun de-ekstraksi senyawa-senyawa aktif dari tumbuhan untuk pengobatan atau senyawa-senyawa penting untuk industri makanan, misalnya ekstraksi minyak atsiri lemon, jahe, beta-carotene dari tumbuh-tumbuhan atau de-ekstraksi kafein pada kopi.

Coagulation and Flocculation Process Fundamentals

All waters, especially surface waters, contain both dissolved and suspended particles. Coagulation and flocculation processes are used to separate the suspended solids portion from the water.

The suspended particles vary considerably in source, composition charge, particle size, shape, and density. Correct application of coagulation and flocculation processes and selection of the coagulants depend upon understanding the interaction between these factors. The small particles are stabilized (kept in suspension) by the action of physical forces on the particles themselves. One of the forces playing a dominant role in stabilization results from the surface charge present on the particles. Most solids suspended in water possess a negative charge and, since they have the same type of surface charge, repel each other when they come close together. Therefore, they will remain in suspension rather than clump together and settle out of the water.

Coagulation and flocculation occur in successive steps intended to overcome the forces stabilizing the suspended particles, allowing particle collision and growth of flock. If step one is incomplete, the following step will be unsuccessful.

Coagulation is the first step that destabilizes the particle’s charges. Coagulants with charges opposite those of the suspended solids are added to the water to neutralize the negative charges on dispersed non-settle-able solids such as clay and colour-producing organic substances. Once the charge is neutralized, the small suspended particles are capable of sticking together. The slightly larger particles, formed through this process and called micro-flocks  are not visible to the naked eye. The water surrounding the newly formed micro-flocks should be clear. If it is not, all the particles’ charges have not been neutralized, and coagulation has not been carried to completion. More coagulant may need to be added. A high-energy, rapid-mix to properly disperse the coagulant and promote particle collisions is needed to achieve good coagulation. Over-mixing does not affect coagulation, but insufficient mixing will leave this step incomplete. Coagulants should be added where sufficient mixing will occur. Proper contact time in the rapid-mix chamber is typically 1 to 3 minutes.

Following the first step of coagulation, a second process called flocculation occurs. Flocculation, a gentle mixing stage, increases the particle size from submicroscopic micro-flocks to visible suspended particles. The micro-flocks are brought into contact with each other through the process of slow mixing. Collisions of the micro-flock particles cause them to bond to produce larger, visible flocks called pinflocs  The flock size continues to build through additional collisions and interaction with inorganic polymers formed by the coagulant or with organic polymers added. Macro-flocks are formed. High molecular weight polymers, called coagulant aids, may be added during this step to help bridge, bind, and strengthen the flock  add weight, and increase settling rate. Once the flock has reached it optimum size and strength, the water is ready for the sedimentation process. Design contact times for flocculation range from 15 or 20 minutes to an hour or more.

Flocculation requires careful attention to the mixing velocity and amount of mix energy. To prevent the flock from tearing apart or shearing, the mixing velocity and energy input are usually tapered off as the size of the flock increases. Once flocks are torn apart, it is difficult to get them to reform to their optimum size and strength. The amount of operator control available in flocculation is highly dependent upon the type and design of the equipment.

Sedimentation basins are used in conventional plants. Direct-filtration plants skip the sedimentation stage and go directly to filtration. Detention times for sedimentation are in the range of 1 to 4 hours. Inlets are designed to distribute water evenly and at uniform velocities. Overflow rates should not exceed 20,000 gallons per day per foot of weir length. Velocity should not exceed 0.5 feet per minute. Sedimentation basins are used to settle out the flock before going to the filters. Some type of sludge collection device should be used to remove sludge from the bottom of the basin.

Conventional plant designs separate the coagulation stage from the flocculation stage. Normally this is followed by a sedimentation stage, after which filtration takes place. Plants designed for direct filtration route the water directly from flocculation to filtration. These systems typically have a higher raw-water quality. Conventional designs can incorporate adjustable mixing speeds in both the rapid-mix and slow-mix equipment. Multiple feed points for coagulants, polymers, flocculants, and other chemicals can be provided. There is generally adequate space to separate the feed points for incompatible chemicals. Conventional plant designs have conservative retention times and rise rates. This usually results in requirements for large process basins and a large amount of land for the plant site. On-site pilot plant evaluation of the proposed process, by a qualified engineer familiar with the source of the water, is advisable prior to selection and construction of the units.

Retention or detention time is the theoretical time in minutes that water spends in a process. It is calculated by dividing the liquid volume, in gallons, of a basin by the plant flow rate in gallons per minute. Actual detention time in a basin will be less than the theoretical detention time because of “dead areas” and short circuiting, which could be due to inadequate baffling.

Retention time = basin volume (gallons) : gpm flow

The rise rate is calculated by dividing the flow in gallons per minute by the net up-flow area of the basin in square feet.

Rise rate = gpm flow : surface area

Some designs incorporate coagulation, flocculation, and sedimentation within a single unit. These designs can be separated into up-flow solids contact units and sludge blanket units. Most solids contact designs use recirculation of previously formed floes to enhance flock formation and maximize usage of treatment chemicals. Sludge bed designs force the newly forming flocks to pass upward through a suspended bed of flock. In both styles of units, the cross-sectional surface of the basin increases from the bottom to top, causing the water flow to slow as it rises, and allowing the flock to settle out. The combination units generally use higher rise rates and shorter detention time than conventional treatment. Numerous manufacturers market proprietary units based on these design concepts. These units are more compact and require less land for plant site location. On-site pilot plant evaluation of the proposed process, by a qualified engineer familiar with the source water, is advisable prior to selection and construction of combined units.

The choice of coagulant chemical depends upon the nature of the suspended solid to be removed, the raw water conditions, the facility design, and the cost of the amount of chemical necessary to produce the desired result. Final selection of the coagulants should be made following thorough jar testing and plant scale evaluation. Considerations must be given to required effluent quality, effect upon down stream treatment process performance, cost, method and cost of sludge handling and disposal, and net overall cost at the dose required for effective treatment.

Inorganic coagulants such as aluminium and iron salts are the most commonly used. When added to the water, they furnish highly charged ions to neutralize the suspended particles. The inorganic hydroxides formed produce short polymer chains which enhance micro-flock formation. Inorganic coagulants usually offer the lowest price per pound, are widely available, and, when properly applied, are quite effective in removing most suspended solids. They are also capable of removing a portion of the organic precursors which may combine with chlorine to form disinfection by-products. They produce large volumes of flock which can entrap bacteria as they settle. However, they may alter the pH of the water since they consume alkalinity. When applied in a lime soda ash softening process, alum and iron salts generate demand for lime and soda ash. They require corrosion-resistant storage and feed equipment. The large volumes of settled flock must be disposed of in an environmentally acceptable manner.

Common coagulant chemicals used are alum, ferric sulfate, ferric chloride, ferrous sulfate, and sodium aluminate. The first four will lower the alkalinity and pH of the solution while the sodium aluminate will add alkalinity and raise the pH. The reactions of each are as follows:

Alum:

Al2(SO4)3 + 3Ca(HCO3)2  –>  2Al(OH)3 + 3CaSO4 + 6CO2, with calcium carbonate presents in the water to be treated

Ferric sulfate:

Fe2(SO4)3 + 3Ca(HCO3)2  –>  2Fe(OH)3 + 3CaSO4 + 6CO2, with calcium bicarbonate presents in the water to be treated

Ferric chloride:

2FeCl3 + 3Ca(HCO3)2  –>  2Fe(OH)3 + 3CaCl2 + 6CO2, with calcium bicarbonate presents in the water to be treated

Ferro sulfate:

FeSO4 + 3Ca(HCO3)2  –>  Fe(OH)2 + CaSO4 + 2CO2, with calcium bicarbonate presents in the water to be treated

Sodium aluminate:

2Na2Al2O4 + Ca(HCO3)2  –> 8Al(OH)3 + 3Na2CO3 + 6H2O, with calcium bicarbonate presents in the water to be treated

Na2Al2O4 + CO2  –>  2Al(OH)3 + Na2CO3, with carbon dioxide presents in the water to be treated

Na2Al2O4 + MgCO3  –>  MgAl2O4 + Na2CO3, with magnesium carbonate presents in the water to be treated

Polymers are becoming more widely used, especially as coagulant aids together with the regular inorganic coagulants. Anionic polymers are often used with metal coagulants. Low- to-medium weight cationic polymers may be used alone or in combination with the aluminium and iron type coagulants to attract the suspended solids and neutralize their surface charge. The manufacturer can produce a wide range of products that meet a variety of source-water conditions by controlling the amount and type of charge and relative molecular weight of the polymer. Polymers are effective over a wider pH range than inorganic coagulants. They can be applied at lower doses, and they do not consume alkalinity. They produce smaller volumes of more concentrated, rapidly settling flock  The flock formed from use of a properly selected polymer will be more resistant to shear, resulting in less carry-over and a cleaner effluent. Polymers are generally several times more expensive in their price per pound than inorganic coagulants. Selection of the proper polymer for the application requires considerable jar testing under simulated plant conditions, followed by pilot or plant-scale trials. All polymers must be approved for potable water use by regulatory  agencies.

Brief of Waste Water Treatment

Waste water treatment is designed to use the natural purification processes (self purification processes of streams and rivers) to the maximum level possible. It is also designed to complete these processes in a controlled environment rather than over many miles of a stream or river. Moreover, the treatment plant is also designed to remove other contaminants that are not normally subjected to natural processes, as well as treating the solids that are generated through the treatment unit steps. The typical waste water treatment plant is designed to achieve many different purposes:

  1. Protect public health.
  2. Protect public water supplies.
  3. Protect aquatic life.
  4. Preserve the best uses of the waters.
  5. Protect adjacent lands.

Waste water treatment is a series of steps. Each of the steps can be accomplished using one or more treatment processes or types of equipment. The major categories of treatment steps are:

  1. Preliminary treatment: Removes materials that could damage plant equipment or would occupy treatment capacity without being treated.
  2. Primary treatment: Removes settle-able and float-able solids (may not be present in all treatment plants).
  3. Secondary treatment: Removes BOD and dis-solved and colloidal suspended organic matter by biological action. Organics are converted to stable solids, carbon dioxide and more organisms.
  4. Advanced waste treatment: Uses physical, chemical, and biological processes to remove additional BOD, solids and nutrients (not present in all treatment plants).
  5. Disinfection: Removes micro-organisms to eliminate or reduce the possibility of disease when the flow is discharged.
  6. Sludge treatment: Stabilizes the solids removed from waste water during treatment, inactivates pathogenic organisms, and reduces the volume of the sludge by removing water.

Generation of Waste Water

Waste water is generated by five major sources:

  1. Human and animal wastes: Contains the solid and liquid discharges of humans and animals and is considered by many to be the most dangerous from a human health viewpoint. The primary health hazard is presented by the millions of bacteria, viruses, and other micro-organisms (some of which may be pathogenic) present in the waste stream.
  2. Household wastes: Consists of wastes, other than human and animal wastes, discharged from the home. Household wastes usually contain paper, household cleaners, detergents, trash, garbage, and other substances the home owner discharges into the sewer system.
  3. Industrial wastes: Includes industry specific materials that can be discharged from industrial processes into the collection system. Typically contains chemicals, dyes, acids, alkalis, grit, detergents, and highly toxic materials.
  4. Storm water run-off: Many collection systems are designed to carry both the wastes of the community and storm water run-off  In this type of system when a storm event occurs, the waste stream can contain large amounts of sand, gravel, and other grit as well as excessive amounts of water.
  5. Groundwater infiltration: Groundwater will enter older improperly sealed collection systems through cracks or unsealed pipe joints. Not only can this add large amounts of water to waste water flows, but also additional grit.

Classification of Waste Water

Waste water can be classified according to the sources of flows:

  1. Domestic (sewage) waste water: Contains mainly human and animal wastes, household wastes, small amounts of groundwater infiltration and small amounts of industrial wastes.
  2. Sanitary waste water: Consists of domestic wastes and significant amounts of industrial wastes. In many cases, the industrial wastes can be treated without special precautions. However, in some cases, the industrial wastes will require special precautions or a pretreatment program to ensure the wastes do not cause compliance problems for the waste water treatment plant.
  3. Industrial waste water: Consists of industrial wastes only. Often the industry will determine that it is safer and more economical to treat its waste independent of domestic waste.
  4. Combined waste water: Consists of a combination of sanitary waste water and storm water run-off  All the waste water and storm water of the community is transported through one system to the treatment plant.
  5. Storm water: Contains a separate collection system (no sanitary waste) that carries storm water run-off including street debris, road salt, and grit.

Waste Water Characteristics

Waste water contains many different substances that can be used to characterize it. The specific substances and amounts or concentrations of each will vary, depending on the source. It is difficult to precisely characterize waste water. Instead, waste water characterization is usually based on and applied to an average domestic waste water.

A. Physical Characteristics

  1. Colour: Fresh waste water is usually a light brownish-grey colour  However, typical waste-water is grey and has a cloudy appearance. The colour of the waste water will change significantly if allowed to go septic (if travel time in the collection system increases). Typical septic waste water will have a black colour.
  2. Odour: Odours in domestic waste water usually are caused by gases produced by the decomposition of organic matter or by other substances added to the waste water. Fresh domestic waste-water has a musty odour. If the waste water is allowed to go septic, this odour will significantly change to a rotten egg odour associated with the production of hydrogen sulfide (H2S).
  3. Temperature: The temperature of waste water is commonly higher than that of the water sup-ply because of the addition of warm water from households and industrial plants. However, significant amounts of infiltration or storm water flow can cause major temperature fluctuations.
  4. Flow: The actual volume of waste water is commonly used as a physical characterization of waste water and is normally expressed in terms of gallons per person per day. Most treatment plants are designed using an expected flow of 100 to 200 gallons per person per day. This figure may have to be revised to reflect the degree of infiltration or storm flow the plant receives. Flow rates will vary throughout the day. This variation, which can be as much as 50 to 200% of the average daily flow is known as the diurnal flow variation (occurring in a day or daily).

B. Chemical Characteristics

  1. Alkalinity: This is a measure of the waste-water’s capability to neutralize acids. It is measured in terms of bicarbonate, carbonate, and hydroxide alkalinity. Alkalinity is essential to buffer (hold the neutral pH) of the waste water during the biological treatment processes.
  2. Biochemical oxygen demand: This is a measure of the amount of biodegradable matter in the waste water. Normally measured by a 5-d test conducted at 20 deg. C. The BOD5 domestic waste is normally in the range of 100 to 300 mg/L.
  3. Chemical oxygen demand: This is a measure of the amount of oxidized-able matter present in the sample. The COD is normally in the range of 200 to 500 mg/L. The presence of industrial wastes can increase this significantly.
  4. Dissolved gases: These are gases that are dissolved in waste water. The specific gases and normal concentrations are based upon the composition of the waste water. Typical domestic waste water contains oxygen in relatively low concentrations, carbon dioxide, and hydrogen sulfide (if septic conditions exist).
  5. Nitrogen compounds — The type and amount of nitrogen present will vary from the raw waste water to the treated effluent. Nitrogen fol-lows a cycle of oxidation and reduction. Most of the nitrogen in untreated waste water will be in the forms of organic nitrogen and ammonia nitrogen. Laboratory tests exist for determination of both of these forms. The sum of these two forms of nitrogen is also measured and is known as total kjeldahl nitrogen (TKN). Waste water will normally contain between 20 to 85 mg/L of nitrogen. Organic nitrogen will normally be in the range of 8 to 35 mg/L, and ammonia nitro-gen will be in the range of 12 to 50 mg/L.
  6. pH: This is a method of expressing the acid condition of the waste water. pH is expressed on a scale of 1 to 14. For proper treatment, waste-water pH should normally be in the range of 6.5 to 9.0 (ideally 6.5 to 8.0).
  7. Phosphorus: This element is essential to bio-logical activity and must be present in at least minimum quantities or secondary treatment processes will not perform. Excessive amounts can cause stream damage and excessive algal growth. Phosphorus will normally be in the range of 6 to 20 mg/L. The removal of phosphate compounds from detergents has had a significant impact on the amounts of phosphorus in waste water.
  8. Solids: Most pollutants found in waste water can be classified as solids. Waste water treatment is generally designed to remove solids or to convert solids to a form that is more stable or can be removed. Solids can be classified by their chemical composition (organic or inorganic) or by their physical characteristics (settle-able, float-able, and colloidal). Concentration of total solids in waste water is normally in the range of 350 to 1200 mg/L.
  9. Water: This is always the major constituent of waste water. In most cases water makes up 99.5 to 99.9% of the waste water. Even in the strongest waste water, the total amount of contamination present is less than 0.5% of the total and in average strength wastes it is usually less than 0.1%.

Solids can be classified as follows:

  • Organic solids: Consists of carbon, hydrogen, oxygen, nitrogen and can be converted to carbon dioxide and water by ignition at 550 deg. C.
  • Inorganic solids: Mineral solids that are unaffected by ignition.
  • Suspended solids: These solids will not pass through a glass fibre filter pad. Can be further classified as Total suspended solids (TSS), volatile suspended solids, and fixed suspended solids. Can also be separated into three components based on settling characteristics: settle-able solids, float-able solids, and colloidal solids. Total suspended solids in waste water are normally in the range of 100  to 350 mg/L.
  • Dissolved solids: These solids will pass through a glass fibre filter pad. Can also be classified as total dissolved solids (TDS), volatile dissolved solids, and fixed dissolved solids. TDS are normally in the range of 250 to 850 mg/L.

C. Biological Characteristics 

After undergoing physical aspects of treatment (i.e., screening, grit removal, and sedimentation) in preliminary and primary treatment, waste water still contains some suspended solids and other solids that are dissolved in the water. In a natural stream, such substances are a source of food for protozoa, fungi, algae, and several varieties of bacteria. In secondary waste water treatment, these same microscopic organisms (which are one of the main reasons for treating waste water) are allowed to work as fast as they can to biologically convert the dissolved solids to suspended solids that will physically settle out at the end of secondary treatment.

Raw waste water influent typically contains millions of organisms. The majority of these organisms are non-pathogenic, but several pathogenic organisms may also be present. (These may include the organisms responsible for diseases such as typhoid, tetanus, hepatitis, dysentery, gastroenteritis, and others).

Many of the organisms found in waste water are microscopic (micro-organisms); they include algae, bacteria, protozoa (e.g., amoeba, flagellates, free-swimming ciliates, and stalked ciliates), rotifers and viruses.

Summary of typical domestic waste-water characteristics:

Characteristic Typical Characteristic
Color Gray
Odor Musty
DO >1.0 mg/L
pH 6.5–9.0
TSS 100–350 mg/L
BOD 100–300 mg/L
COD 200–500 mg/L
Flow 100–200 gal/person/d
Total nitrogen 20–85 mg/L
Total phosphorus 6–20 mg/L
Fecal coliform 500,000–3,000,000 MPN/100 mL

 

Pengawetan Bahan

Secara garis besar pengawetan bahan dapat dibagi dalam 3 golongan yaitu :

  1. Cara alami
  2. Cara biologis
  3. Cara kimiawi

1. PENGAWETAN SECARA ALAMI

Proses pengawetan secara alami meliputi pemanasan dan pendinginan.

2. PENGAWETAN SECARA BIOLOGIS

Proses pengawetan secara biologis misalnya dengan peragian (fermentasi).

a. Peragian (Fermentasi)

Merupakan  proses  perubahan  karbohidrat  menjadi  alkohol.  Zat-zat  yang bekerja pada proses ini ialah enzim yang dibuat oleh sel-sel ragi. Lamanya proses peragian tergantung dari bahan yang akan diragikan.

b. Enzim

Enzim adalah suatu katalisator biologis yang dihasilkan oleh sel-sel hidup dan dapat membantu mempercepat bermacam-macam reaksi biokimia. Enzim yang terdapat dalam makanan dapat berasal dari bahan mentahnya atau mikroorganisme yang terdapat pada makanan tersebut. Bahan makanan seperti daging, ikan susu, buah-buahan dan biji-bijian mengandung enzim tertentu secara normal ikut aktif bekerja di dalam bahan tersebut. Enzim dapat menyebabkan perubahan dalam bahan pangan. Perubahan itu dapat menguntungkan ini dapat dikembangkan semaksimal mungkin, tetapi yang merugikan harus dicegah. Perubahan yang terjadi dapat berupa rasa, warna, bentuk, kalori, dan sifat-sifat lainnya.

Beberapa enzim yang penting dalam pengolahan daging adalah bromelin dari nenas dan papain dari getah buah atau daun pepaya.

Enzim Bromalin

Didapat dari buah nanas, digunakan untuk mengempukkan daging. Aktivitasnya dipengaruhi  oleh  kematangan  buah,  konsentrasi  pemakaian  dan   waktu penggunaan. Untuk memperoleh hasil yang maksimum sebaiknya digunakan buah yang muda. Semakin banyak nenas yang digunakan, semakin cepat proses bekerjanya.

Enzim Papain

Berupa getah pepaya, disadap dari buahnya yang berumur 2,5 – 3 bulan. Dapat digunakan untuk mengepukan daging, bahan penjernih pada industri minuman bir, industri tekstil, industri penyamakan kulit, industri pharmasi dan alat-alat kecantikan (kosmetik) dan lain-lain.

Enzim papain biasa diperdagangkan dalam bentuk serbuk putih kekuningan, halus, dan kadar airnya 8%. Enzim ini harus disimpan di bawah suhu 60 derajat  Celsius. Pada 1 (satu) buah pepaya dapat dilakukan 5 kali sadapan. Tiap sadapan menghasilkan + 20 gram getah. Getah dapat diambil setiap 4 hari dengan jalan menggoreskan buah tersebut dengan pisau.

3. PENGAWETAN SECARA KIMIA

Menggunakan bahan-bahan kimia, seperti gula pasir, garam dapur, nitrat, nitrit, natrium benzoat, asam propionat, asam sitrat, garam sulfat, dan lain-lain.

Proses pengasapan juga termasuk cara kimia sebab bahan-bahan kimia dalam asap dimasukkan ke dalam makanan yang diawetkan. Apabila jumlah pemakainannya tepat, pengawetan dengan bahan-bahan kimia dalam makanan sangat praktis karena dapat menghambat berkembangbiaknya mikroorganisme seperti jamur atau kapang, bakteri, dan ragi.

a. Asam propionat (natrium propionat atau kalsium propionat)

Sering digunakan untuk mencegah tumbuhnya jamur atau kapang. Untuk bahan tepung terigu, dosis maksimum yang digunakan adalah 0,32 % atau 3,2 gram/kg bahan; sedngkan untuk bahan dari keju, dosis maksimum sebesar 0,3 % atau 3 gram/kg bahan.

b. Asam Sitrat (citric acid)

Merupakan senyawa intermediet dari asam organik yang berbentuk kristal atau serbuk putih. Asam sitrat ini maudah larut dalam air, spriritus, dan ethanol, tidak berbau, rasanya sangat asam, serta jika dipanaskan akan meleleh kemudian terurai yang selanjutnya terbakar sampai menjadi arang. Asam sitrat juga terdapat dalam sari buah-buahan seperti nenas, jeruk, lemon, markisa. Asam ini dipakai untuk meningkatkan rasa asam (mengatur tingkat keasaman) pada berbagai pengolahan minum, produk air susu, selai, jeli dan lain-lain. Asam sitrat berfungsi sebagai pengawet pada keju dan sirup, digunakan untuk mencegah proses kristalisasi dalam madu, gula-gula (termasuk fondant), dan juga untuk mencegah pemucatan berbagai makanan, misalnya buah-buahan kaleng dan ikan. Larutan asam sitrat yang encer dapat digunakan untuk mencegah pembentukan bintik-bintik hitam pada udang. Penggunaan maksimum dalam minuman adalah sebesar 3 gram/liter sari buah.

c. Benzoat (acidum benzoicum atau flores benzoes atau benzoic acid)

Benzoat biasa diperdagangkan adalah garam natrium benzoat, dengan ciri-ciri berbentuk serbuk atau kristal putih, halus, sedikit berbau, berasa payau, dan pada pemanasan yang tinggi akan meleleh lalu terbakar.

d. Bleng

Merupakan larutan garam fosfat, berbentuk kristal, dan berwarna kekuning-kuningan. Bleng banyak mengandung unsur boron dan beberapa mineral lainnya. Penambahan bleng selain sebagai pengawet pada pengolahan bahan pangan terutama kerupuk, juga untuk mengembangkan dan mengenyalkan bahan, serta memberi aroma dan rasa yang khas. Penggunaannya sebagai pengawet maksimal sebanyak 20 gram per 25 kg bahan. Bleng dapat dicampur langsung dalam adonan setelah dilarutkan dalam air atau diendapkan terlebih dahulu kemudian cairannya dicampurkan dalam adonan.

e. Garam dapur (natrium klorida)

Garam dapur dalam keadaan murni tidak berwarna, tetapi kadang-kadang berwarna kuning kecoklatan yang berasal dari kotoran-kotoran yang ada didalamnya. Air laut mengandung + 3 % garam dapur.

Garam dapur sebagai penghambat pertumbuhan mikroba, sering digunakan untuk mengawetkan ikan dan juga bahan-bahan lain. Pengunaannya sebagai pengawet minimal sebanyak 20 % atau 2 ons/kg bahan.

f. Garam sulfat

Digunakan dalam makanan untuk mencegah timbulnya ragi, bakteri dan warna kecoklatan pada waktu pemasakan.

g. Gula pasir

Digunakan sebagai pengawet dan lebih efektif bila dipakai dengan tujuan menghambat pertumbuhan bakteri. Sebagai bahan pengawet, pengunaan gula pasir minimal 3% atau 30 gram/kg bahan.

Kaporit (Calsium hypochlorit atau hypochloris calsiucus atau chlor kalk atau kapur klor)

Merupakan campuran dari calsium hypochlorit, -chlorida da -oksida, berupa serbuk putih yang sering menggumpal hingga membentuk butiran. Biasanya mengandung 25~70 % chlor aktif dan baunya sangat khas. Kaporit yang mengandung klor ini digunakan untuk mensterilkan air minum dan kolam renang, serta mencuci ikan.

i. Natrium Metabisulfit

Natrium metabisulfit yang diperdagangkan berbentuk kristal. Pemakaiannya dalam pengolahan bahan pangan bertujuan untuk mencegah proses pencoklatan pada buah sebelum diolah, menghilangkan bau dan rasa getir terutama pada ubi kayu serta untuk mempertahankan warna agar tetap menarik. Natrium metabisulfit dapat dilarutkan bersama-sama bahan atau diasapkan.

Prinsip pengasapan tersebut adalah mengalirkan gas SO2 ke dalam bahan sebelum pengeringan. Pengasapan dilakukan selama + 15 menit. Maksimum penggunaannya sebanyak 2 gram/kg bahan. Natrium metabisulfit yang berlebihan akan hilang sewaktu pengeringan.

j. Nitrit dan Nitrat

Terdapat dalam bentuk garam kalium dan natrium nitrit. Natrium nitrit berbentuk butiran berwarna putih, sedangkan kalium nitrit berwarna putih atau kuning dan kelarutannya tinggi dalam air.

Nitrit dan nitrat dapat menghambat pertumbuhan bakteri pada daging dan ikan dalam waktu yang singkat. Sering digunakan pada danging yang telah dilayukan untuk mempertahankan warna merah daging.

Jumlah nitrit yang ditambahkan biasanya 0,1 % atau 1 gram/kg bahan yang diawetkan. Untuk nitrat 0,2 % atau 2 gram/kg bahan. Apabila lebih dari jumlah tersebut akan menyebabkan keracunan, oleh sebab itu pemakaian nitrit dan nitrat diatur dalam undang-undang. Untuk mengatasi keracunan tersebut maka pemakaian nitrit biasanya dicampur dengan nitrat dalam jumlah yang sama. Nitrat tersebut akan diubah menjadi nitrit sedikit demi sedikit sehingga jumlah nitrit di dalam daging tidak berlebihan.

k. Sendawa

Merupakan senyawa organik yang berbentuk kristal putih atau tak berwarna, rasanya asin dan sejuk. Sendawa mudah larut dalamair dan meleleh pada suhu 377 derajat Celsius. Ada tiga bentuk sendawa, yaitu kalium nitrat, kalsium nitrat dan natrium nitrat. Sendawa dapat dibuat dengan mereaksikan kalium khlorida dengan asam nitrat atau natrium nitrat. Dalamindustri biasa digunakan untuk membuat korek api, bahan peledak, pupuk, dan juga untuk pengawet abahn pangan. Penggunaannya maksimum sebanyak 0,1 % atau 1 gram/kg bahan.

Zat Pewarna

Zat pewarna ditambahkan ke dalam bahan makanan seperti daging, sayuran, buah-buahan dan lain-lainnya untuk menarik selera dan keinginan konsumen. Bahan pewarna alam yang sering digunakan adalah kunyit, karamel dan pandan. Dibandingkan dengan pewarna alami, maka bahan pewarna sintetis mempunyai banyak kelebihan dalam hal keanekaragaman warnanya, baik keseragaman maupun kestabilan, serta penyimpanannya lebih mudah dan tahan lama. Misalnya carbon black yang sering digunakan untuk memberikan warna hitam, titanium oksida untuk memutihkan, dan lain-lain. Bahan pewarna alami warnanya jarang yang sesuai dengan yang dinginkan.

PROSES BEBAS KUMAN

Ada dua cara proses bebas kuman, yaitu sterilisasi dan pasteurisasi.

1. Sterilisasi

Adalah proses bebas kuman, virus, spora dan jamur. Keadaan steril ini dapat dicapai dengan cara alami maupun kimiawi.

a. Secara alami dapat dilakukan dengan:

  • Memanaskan alat-alat dalam air mendidih pada suhu 100 derajat Celsius selama 15 menit, untuk mematikan kuman dan virus.
  • Memanaskan alat-alat dalam air mendidih pada suhu 120 derajat Celsius selama 15 menit untuk mematikan spora dan jamur.

b. Secara kimiawi dapat dilakukan dengan menggunakan antiseptik dan desinfektan.

Antiseptik

Merupakan zat yang dapat menghambat atau membunuh pertumbuhan jasad renik seperti bakteri, jamur dan lain-lain pada jaringan hidup. Ada beberapa bahan yang sering digunakan sebagai antiseptik, antara lain:

  1. Alkohol, efektif digunakan dengan kepekatan 50 – 70 %;untuk memecah protein yang ada dalam kuman penyakit sehingga pertumbuhannya terhambat.
  2. Asam dan alkali, penggunaannya sama dengan alkohol.
  3. Air raksa (Hg), arsen (As) dan perak (Ag), yang bekerja melalui sistem enzim pada kuman penyakit.
  4. Pengoksida, juga bekerja pada sistem enzim kuman penyakit. Terdiri dari iodium untuk desinfektan kulit dan chlor untuk desinfektan air minum.
  5. Zat warna, terutama analin dan akridin yang dipakai untuk mewarnai kuman penyakit sehingga mudah untuk menemukan jaringan mana dari kuman tersebut yang akan dihambat pertumbuhannya.
  6. Pengalkil, yang digunakan untuk memecah protein kuman sehingga aktifitasnya terhambat. Contohnya adalah formaldehid.

Desinfektan

Merupakan bahan kimia yang digunakan untuk mencegah terjadinya infeksi atau pencemaran jasad renik seperti bakteri dan virus, juga untuk membunuh kuman penyakit lainnya. Jenis desinfektan yang biasa digunakan adalah chlor atau formaldehid. Jenis ini lebih efektif bila dicampur dengan air terutama dalampembuatan es. Untuk menjaga kualitas ikan penggunaan chlor sebanyak 0,05 % atau 0,5 gram/liter air sangat efektif.

2. Pasteurisasi

Dilakukan dengan memanaskan tempat yang telah diisi makanan atau minuman dalam air mendidih pada suhu sekurang-kurangnya 63 derajat Celsius selama 30 menit, kemudian segera diangkat dan didinginkan hingga suhu maksimum 10 derajat Celsius. Dengan cara ini maka pertumbuhan bakteri dapat dihambat dengan cepat tanpa mempengaruhi rasa makanan dan minuman.

 

 

Managing Hazardous Chemicals on Site

Incompatible Chemicals

When they come in contact with each other, incompatible chemicals could react by releasing toxic or flammable gases, exploding or spontaneously igniting. Segregate and store chemicals by hazard class to minimize the risk of reactions between incompatible chemicals and label storage cabinets and cupboards with the hazard class of the stored materials. MSDSs should be available for all chemicals on site. Review them for information about incompatibilities. The following is a partial list of common incompatible chemicals that can react with each other.

Acids and Bases

Store strong acids and bases separately in enclosures made of corrosion-resistant materials.

Oxidizing Chemicals

Oxidizer are materials that yield oxygen readily to stimulate the combustion of organic matter. When oxidizer come in contact with flammable solvents, they can start or fuel fires.

Typical oxidizing agents found in laboratories include chromates and dichromates, halogens and halogenating agents, peroxides and organic peroxides, nitric acid and nitrates, chlorates and perchlorates, and permanganates and persulfates.

  • Store oxidizer away from alkalis, azides, nitrites, organic compounds (including acetic acid), powdered metals and activated carbon.
  • Avoid contact between oxidizer and common combustible materials such as paper, cloth and wood.

Water-Reactive Compounds

Water-reactive compounds include alkali earth metals such as lithium, potassium and sodium, sodium borohydride, calcium carbide and sodium peroxide. Solutions containing water, such as inorganic acids and alcohols, should be kept separated from these chemicals during storage and use.

  • Store water-reactive compounds away from aqueous solutions, inorganic acids, base solutions and alcohols. Though many chemical storage systems recommend water-reactive solids be stored in the flammable storage cabinets, in many cases this would not be prudent since these cabinets often contain alcohols with 30 percent water.
  • Keep a Class D fire extinguisher near storage and use areas for these compounds.
  • Store these compounds in locations protected from automated sprinklers.
  • Alkali metals should be stored in areas where they are free of moisture, contact with oxygen, and, in the case of lithium, nitrogen gas.
  • Only the amount of water-reactive materials necessary to perform the work should be removed from storage. Spare materials should be returned to the appropriate storage container, and the container to its appropriate location.
  • Storage containers should be labelled with their contents, hazardous properties and type of oil or gas used to inert the metal. Furthermore, these containers should be stored individually or in a manner that allows visual inspection for container integrity.
  • Storage areas should be free of combustibles and of ignition sources.
  • The portions of the building dedicated as storage area for alkali metals should not be equipped with automatic sprinklers. No other source of water (e.g., showers, sinks) should be in the immediate proximity of the metal.
  • Storage areas should be prominently labelled to indicate the presence of alkali metals.

Potentially Explosive Chemicals

Several classes of chemicals may become explosive when they react with other compounds or may become unstable during storage. Seriously question whether you need these compounds in your facility. These include peroxidizable solvents, potentially explosive dinitro- and trinitro- organic compounds and elemental potassium.

Metal Azides

Inorganic azide compounds, such as sodium azide, can react with metals and their salts to produce explosive metal azide crystals. For example, when azide solutions are poured down drains the dilute solution can react with lead solder and copper pipes to produce explosive lead or copper azide salts.

  • If we must use azide solutions, replace metal pipes with PVC or other non-metal piping materials.
  • If sodium azide solutions have been discharged to drains having metallic pipes or solder, we should assume our pipes may be contaminated with metal azide salts. Contact the authorized environmental institution for assistance in determining the proper disposal procedures.

Ethers and Other Peroxide-forming Chemicals

Certain ethers are more susceptible to peroxide formation than others. Peroxides are formed by oxygen that reacts with ethers: R-O-R is ether; R-O-O-R is peroxide. It is the oxygen-to-oxygen bond that makes ether unstable. Generally, the larger the alkyl group (R), the more readily the ether will form peroxides. Ethyl ether and isopropyl ether can react with air to form explosive peroxide crystals. Other solvents such as tetrahydrofuran and dioxane can also produce peroxides.

Peroxides can explode when subjected to heat, friction or shock. Do not disturb or open containers in which peroxides may have formed. A good rule of thumb is to dispose of any container holding a peroxide-forming compound one year after the date it was opened. Label these containers with the words “DATE OPENED” and add the date.

To prevent the formation of peroxides:

  • Avoid using peroxide-forming solvents if possible.
  • Purchase ether with butylhydroxy toluene (BHT) or ethanol added as an anti-oxidant.
  • Label ether containers with the dates they are opened.
  • Purchase ether in containers small enough to use all the solvent within six months.
  • Check the MSDSs for our solvents to see if any are prone to creating peroxides.

Elemental potassium is a peroxide-former that is commonly used in school laboratories to demonstrate characteristics of period 1 earth metals. Potassium is a water-reactive earth metal that reacts with moisture in air to start the peroxidation process. This process can be observed by physical changes in the colour of the potassium sticks. Originally a dull silver colour  potassium will oxidise and form white crystals on its surface. As these crystals progressively turn yellow, orange, red and purple, the peroxidation process is advancing and the compound is increasingly at risk of exploding when handled. [Blair, 2000]

Metal Picrates and Picric Acid

Metal picrate compounds and picric acid can become dangerously unstable as a dry powder. Picric acid can dry out and form explosive picrate crystals when exposed to air, especially when contaminated with even minute amounts of metals.

To prevent the formation of explosive picrate crystals:

  • Always keep picric acid wet or in solution.
  • Avoid contact between picric acid and metals. Metal picrate salts are prone to explode when subjected to friction or shock.
  • Never purchase or store picric acid in containers with metal lids.
  • Avoid flushing picric acid solutions down drains at concentrations above 0.01 percent.
  • Dispose of more concentrated picric acid solutions as dangerous waste.
  • Bouin’s Fixative contains picric acid and formaldehyde solution (formalin). Be sure to keep this fixative hydrated with water.
  • If picric acid solutions have been discharged to drains with metallic pipes or soldered joints, assume the piping is contaminated with explosive metal picrate salts. Contact the authorized environmental institution for assistance in determining the proper disposal procedures.

Perchloric Acid

Perchloric acid is highly corrosive and typically occurs as a 70 percent solution. When warmed above 150 degrees Fahrenheit, it is a powerful oxidizer. Perchloric acid can form explosive metal perchlorate crystals in combination with heavy metals. Any work with perchloric acid must be done in a specially-designed fume hood with a water wash down system designed to prevent the build-up of metal perchlorates in the duct work. If we have been performing perchloric acid digestions in a fume hood not specifically designed for perchloric acid, contact the authorized environmental institution for assistance in locating a contractor to evaluate the hood for perchlorate contamination.

  • Spills and other emergencies: In the event of a perchloric acid spill, neutralize with soda-ash (sodium carbonate) or another appropriate neutralizing agent. Soak up the spill with an inorganic based absorbent. Do NOT use rags, paper towels, or sawdust and then put them aside to dry out, as such materials may spontaneously ignite. Likewise, spills on wood may present a fire hazard after the liquid dries.
  • If we must use perchloric acid solutions, replace metal pipes with PVC or other non-metal piping materials.
  • If perchloric acid solutions have been discharged to drains having metallic pipes or solder, we should assume that our pipes may be contaminated with metal azide salts. Contact the authorized environmental institution for assistance in determining the proper disposal procedures.
  • Regularly inspect our containers of perchloric acid for discoloration. If the acid has turned a dark color and has crystals forming around the bottom of the bottle, there is a potential explosion hazard. Notify an emergency response agency and secure the area.
  • White crystals around the cap are typically an ammonium salt, and small amounts may be washed off the bottle to the sewer using copious amounts of water.

Ammoniacal Silver Staining Solutions

Ammoniacal silver staining solutions are hazardous because they can form explosive silver salts. Whether disposed or deactivated, these wastes are counted against our generator status.

Safe use of these staining solutions includes the following procedures:

  • Don’t allow silver nitrate to remain in ammonium solutions for more than two hours.
  • Keep silver nitrate solutions separate from ammonium hydroxide solutions.
  • Deactivate these waste solutions by diluting 15:1 with water. Then, while stirring frequently, slowly add 5 percent hydrochloric acid to the solution until the pH reaches 2.
  • Add ice if the solution heats up.
  • Silver chloride will precipitate out when the pH reaches 2.
  • Filter out the precipitate and dispose as hazardous waste, adjust the pH of the solution to 6 to 7 with sodium bicarbonate, then discharge to the sanitary sewer.

Planning and Design Criteria of Hazardous Waste Landfills

Essential Components

A HW landfill shall have the following seven essential components:

  1. A liner system at the base and sides of the landfill, which prevents migration of leachate or gas to the surrounding soil.
  2. A  lechate collection and treatment facility, which collects and extracts leachate from within and from the base of the landfill and then treats the leachate to meet standards, notified under E(P) Act 1986.
  3. A gas collection and treatment facility (optional), which collects and extracts gas from within and from the top of the landfill and then treats it or uses it for energy recovery.
  4. A final cover system at the top of the landfill, which enhances surface drainage, prevents infiltration of water and supports surface vegetation.
  5. A surface water drainage system, which collects and removes all surface run-off from the landfill site.
  6. An environmental monitoring system, which periodically collects and analyses air, surface water, soil-gas  (option) and ground water samples around the landfill site.
  7. A closure and post-closure plan which lists the steps that must be taken to close and secure a landfill site once the filling operation has been  completed  and the activities  for long-term monitoring, operation and maintenance of the completed landfill.

Design Life

A landfill design life will comprise of an ‘active’ period and an ‘closure and post-closure’ period. The ‘active’ period shall be comprise of the period for which waste filling is in progress at the landfill and typically range from 10 to 25 years depending on the availability of land area. The ‘closure and post-closure’ period for which a landfill will be monitored and maintained shall be 30 years after the ‘active period’ is completed.

Waste Volume, Waste Compatibility and Landfill Capacity 

The volume of waste to be placed in a landfill will be computed for the active period of the landfill taking into account:

  • The current generation of waste per annum.
  • The anticipated increase in rate of waste generation on the basis on the basis of past records.

A landfill comprise of separate ‘units’. In each unit, only compatible waste will be disposed.

The actual capacity of each landfill unit will be computed taking into account the volume occupied by the liner system and the cover material (daily/weekly (optional) intermediate and final cover) as well as  the compacted density of the waste. In addition, the amount of settlement a waste undergo due to overburden stress and due to bio-degradation (if any) shall also be taken into account.

The total landfill area should be computed on the basis of the designed height of the landfill (usually between 5 to 20 m). Approximately 15 to 20% area more than the area required for land filling should be adopted to accommodate all infrastructure and support facilities as well as to allow the formation of a green belt around the landfill. This additional area shall be computed separately and may be as high as 30% of the total area in case of small to medium landfills. The total landfill area is computed on trial and error basis.

There is no standard method for classifying landfills by their capacity. However, the following nomenclature is often observed in literature:

  • Small size landfill: less than 5 hectare area
  • Medium size landfill: 5 to 20 hectare areas
  • Large size landfill: greater than 20 hectare area

Landfill Layout

A landfill site will comprise of the area in which the waste will be filled as well as additional area for support facilities. The area in which waste is to be   filled   may   comprise   of   separate   landfill   units   with   each   unit, accommodating a group of compatible wastes. Within each unit work may proceed in phases with only a part of area under active operation. Such a layout must be prepared for all landfills. The following facilities must be located in the layout:

  1. Access roads
  2. Equipment shelters
  3. Weighing scales
  4. Office space
  5. Location of waste inspection facility (if used)
  6. Temporary waste storage and / or disposal site for stockpiling cover material and liner material
  7. Location of surface water drainage facilities
  8. Location of landfill leachate management facilities
  9. Location of gas management facilities (optional)
  10. Location of monitoring wells/environmental monitoring facilities
  11. Fencing and green belt along the peripheral boundary
  12. Emergency exit.

It is essential that for each landfill site, a layout be designed incorporating the above mentioned facilities.

Landfill Section

Landfills may have different types of sections depending on the topography of the area. The landfills may take the following forms:

  • Above ground landfills
  • Below ground landfill
  • Slope landfills
  • Valley landfills (canyon landfills)
  • A combination of the above

It is recommended that the landfill section be arrived at keeping in view the topography,  depth  to  water  table  and  availability  of  inner  and  cover material.  Above  ground  landfills  shall  be  preferred  to  below  ground landfills, as leachate collection in the former is by gravity flow and does not require the use of pumps.

Slope landfills and valley landfills are normally adopted in hilly areas; above-ground landfills in flat undulating ground and below-ground landfills in low-lying areas, depressions or pits.

Phased Operation

Before the main design of a landfill can be undertaken it is important to develop the operating methodology. A landfill is operated in phases because it allows the progressive use of the landfill area, such that at any given time a part of the site may have a final cover, a part being actively filled, a part being prepared to receive waste, and a part undisturbed. For each landfill unit, a phased operation plan will be drawn up.

The term ‘phase’ describes a sub-area of the landfill. A ‘phase’ consists of cells, lifts, daily / weekly (optional) or intermediate cover and capped within this period leaving a temporary unrestored sloping face. A ‘phase plan’ shall be drawn up for the active life of the landfill as soon as the landfill as soon as the landfill layout and section are finalized. It must be ensured that each phase reaches the final cover/intermediate cover level at the end of its construction period and that it is capped before the onset of monsoons.

During the monsoon months the waste may stockpiled in a temporary holding areas (covered with roof). During this period and the landfill may be kept capped with the final cover/intermediate cover  and  land-filling operations suspended to reduce infiltration of rain water into the landfill. However,  if  the  incoming waste quantity is too large for temporary stockpiling or the monsoon period lasts for a long period, special phases may have to be designed with high leachate handling capacity and special operating procedures adopted.

Estimation of Leachate Quantity 

Leachate is generated on account of the infiltration of water into landfills and its prelocation through waste as well as by the squeezing of the waste due to self weigh. The quantity of leachate generated in a landfill is strongly dependent on weather and operational practices. The amount of rain falling on the landfill, to a large extent, controls the leachate quantity generated. Precipitation depends on geographical location.

Significant quantity of leachate is produced from the ‘active’ phases of a landfill under operation. The leachate quantity from those portions of a landfill which have received a final cover is minimal. For designing, computer simulated models (e.g. HELP) have to be used for estimation of leachate quantity generation. It is recommended that such studies be conducted to estimate the quantity of leachate and design the leachate drainage, collection and removal  facility.

Liner System 

Leachate control within a landfill involves the following steps:

  1. Prevention of migration of leachate from landfill sides and landfill base to the subsoil by suitable liner system.
  2. Drainage of leachate collected at the base of a landfill to the side of the landfill and removal of the leachate from within the landfill.

On a basis of review of liner systems adopted in different countries and in consideration with Indian conditions, it is recommended that for all HW landfills the liner system criteria be adopted in consultation with SPCB/PCC and commensurate with local area specified needs.

Leachate Drainage, Collection and Removal 

A leachate collection system shall be designed at the base of all landfills. It shall comprise of a drainage layer, perforated pipe collection system, sump collection area, and a removal system.

The leachate collection layer (drainage layer) will usually be a 30 cm thick sand – gravel layer with a slope of 2% or higher and permeability of greater than 10-2 cm/sec (10-4 m/sec). A system of perforated pipes and sumps is provided within the drainage layer. The pipe spacing will be governed by the requirement that the leachate head shall not be greater than the drainage layer thickness.

Leachate will be removed from the landfill by one of the following ways:

  1. Pumping in vertical wells or chimneys.
  2. Pumping in side slope risers.
  3. By gravity drains through the base of a landfill in above ground and sloped landfills.

Side slope risers may be preferred to vertical wells to avoid any down drag problems. Submersible pumps have been used for pumping for several years; educator pimps are also being increasingly used. The leachate may be stored in a holding tank (for a few days) before being sent for treatment.

The design of following components should be undertaken:

  1. Leachate pipe and leachate trench network
  2. Leachate sumps and pumps
  3. Leachate well/side slope riser
  4. Leachate holding tank
  5. Backwashing/backflushing arrangement to prevent clogging/choking/head-loss.

The material used for pipes etc., should be such that it is not affected by the leachate quality.

Leachate Management 

  1. Offsite treatment of leachate: This involves storage, pretreatment and transportation of leachate to off-site facilities not associated with the landfill e.g. industrial effluent treatment facility etc. This will be feasible where offsite facilities are available at a reasonable distance and where pretreatment requirements for the leachate (such as adjustment of pH, reduction in concentration etc.) are not very stringent.  Transportation of leachate to offsite  facility will be undertaken through a manifest system in accordance with HWM rules of MoE.
  2. Onsite treatment of leachate: This involves complete treatment of the lechate at the landfill site to meet discharge standards for lined drains. Treatment processes may be biological, chemical or physical processes.  Processes,  which  have  been  judged  as  having  been “demonstrated”, should be adopted.
  3. Recirculation: One of the methods for treatment of leachate is to recirculate it through the landfill. This has two beneficial effects: (i) the  process  of  landfill  stabilization  is  accelerated  and (ii)  the constitutes of the leachate are attenuated by the biological, chemical and physical changes occurring with the landfill. Recirculation of a leachate requires the design of a distribution system to ensure that the leachate passes uniformly throughout the entire waste. Leachate recirculation  has  been  used  in  some  municipal  waste  landfills. Information on its efficacy in HW landfills is scanty.

Gaseous Emissions Management 

Landfill gas is generated as a product of waste biodegradation or on account of presence of VOCs in the waste. Gas generation can be reduced or eliminated by avoiding disposal of biodegradable/organic wastes. For HW landfills where gaseous emissions are anticipated (as in the case of mixed waste having biodegradable components), the gas management strategy shall be:

  1. Controlled passive venting, or
  2. Controlled collection and treatment/reuse.

Final Cover System

A final landfill cover, comprising of several layers, each with a specific function shall be installed after each landfill phase reaches the full height. The final cover system shall enhance surface drainage, minimize infiltration, support vegetation to prevent erosion and control the release of landfill gases.

Surface Water Drainage System 

Surface water management is required to ensure that rainwater run-off does not drain into the waste from surrounding areas and that there is no waterlogged/ponding on covers of landfills. A surface water drainage system comprising of channels, drains, culverts and basins shall be designed to ensure the following:

  1. Rainwater running off slopes above and outside the landfill area shall be intercepted and channelled to water courses without entering the operational area of the site. This diversion channel may require a low permeability lining to prevent leakage into the landfill.
  2. Rain falling on active tipping areas shall be collected separately and managed as leachate, via the leachate collection drain and leachate collection sumps to the leachate treatment and disposal system.
  3. Rainfall on areas within the landfill site, but on final covers of phases which have been completed and are not actively being used for waste disposal shall be diverted in drainage channels away from active tipping  areas,  and  directed  through  a  settling    pond  to  remove suspended silt, prior to discharge.
  4. Any drainage channels or drains constructed on the restored landfill surface shall be able to accommodate settlement, resist erosion and cope with localized storm conditions.
  5. The horizontal surface of the final cover shall be provided a slope of 3 to 5% for proper surface water drainage. The slope of the cover on the sides will be higher and governed by slope stability considerations.
  6. All interceptor channels, drainage channels and settling ponds (storm water   basins)   shall   be   designed   by   a   hydrologist   using hydro-meteorological data.
  7. It shall be ensured that water collected by surface water drainage system and leachate collected by the leachate collection system do not get intermixed at any stage of collection or storage. This shall apply to the ‘active’ and ‘post closure’ periods of the landfill.

The design of following components shall be undertaken:

  1. Storm-water drains, diversion channels
  2. Storm-water basin
  3. Culverts

Base Stability, Slope Stability and Seismic Aspects

For landfills constructed on loose/soft soil, the base will be checked for stability against bearing failure or excessive settlements. The stability of side slopes of a landfill shall be checked for the following cases:

  1. Stability of excavated slopes.
  2. Stability of liner system along excavated slopes.
  3. Stability of temporary waste slopes constructed to their full height (usually at the end of a phase).
  4. Stability of slopes of above-ground portion of completed landfills.
  5. Stability of cover systems in above ground landfills.

The stability analysis shall be conducted using the following soil mechanics methods depending upon the shape of the failure surface:

  1. Failure surface parallel to slope.
  2. Wedge method of analysis.
  3. Method of slices for circular failure surface.
  4. Special methods for stability of anchored geomembranes along slopes.

In primary design of a landfill section, the following slopes may be adopted:

  • Excavated soil slopes (2.5 horizontal : 1 vertical)
  • Temporary waste slopes (3.0 horizontal : 1 vertical)
  • Final cover slopes (4.0 horizontal : 1 vertical)

Slopes can be made steeper, if found stable by stability analysis results.
Acceptable factors of safety may be taken as 1.3 for temporary slopes and

1.5 for permanent slopes. In earthquake prone areas, the stability of all landfill slopes shall be conducted taking into account seismic coefficient as recommended by BIS codes.

Material Balance 

A  material  balance  shall  be  prepared  for  each  material  required  for construction of a landfill, phase-by-phase, indicating materials required,
material available and deficient material to be imported or surplus material to be exported. If a borrow area is located within the landfill site it shall not become a part of an early phase to avoid stockpiling and double handling.

Site Infrastructure 

The following site infrastructure shall be provided at each HW landfill:

  1. Site Entrance and Fencing
  2. Administrative and Site Control Offices
  3. Access Roads
  4. Waste Inspection and Sampling Facility
  5. Equipment Workshops and Garages
  6. Signs and Directions
  7. Water Supply
  8. Lighting
  9. Vehicle Cleaning Facility
  10. Fire Fighting Equipment

Site entrance infrastructure should include:

  1. A permanent, wide, entrance road with separate entry and exit lanes and gates.
  2. Sufficient length/parking space inside the entrance gate till the weighbridge to prevent queuing of vehicles outside the entrance gate and onto the highway.
  3. A properly landscaped entrance area with a green belt of  20 m containing tree plantation for good visual impact.
  4. Proper direction signs and lighting at the entrance gate.
  5. A perimeter fencing of at least 2 m height all around the landfill site with lockable gates to prevent unauthorized access.
  6. Full time security guard at the site.

An  accurate  record of waste inputs is essential, hence good quality weigh bridges shall be used. For sites receiving more than 400 tons per day
of waste, twin weigh bridges to weigh both entry and exit weights may be located on either side of an island on which a weighbridge office room is located. The weighbridge office should be elevated and the weighbridge operators should be able to see entering vehicles as well as speak to drivers.

Administrative and site control offices should include: administrative office building (permanent); site control office (portable) near the active landfill area;  stores (permanent) within or near administrative office; welfare facilities – toilets, shower room, first aid room, mess room, small temporary
accommodation; infrastructural services – electricity, drinking water supply, telephone, sewerage and drainage system and communication services
(telephone etc.) between site control office and administrative office and weighbridge office.

Environmental Monitoring System 

Monitoring at a landfill site shall be carried out in four zones:

  1. On and within the landfill
  2. In the unsaturated subsurface zone (vadose zone) beneath and around the landfill
  3. In the groundwater (saturated) zone beneath and around the landfill
  4. In the atmosphere/local air above and around the landfill

The parameters to be monitored regulatory are:

  1. Long-term movements of the landfill cover
  2. Leachate head within the landfill
  3. Leachate quality within the landfill
  4. Gas quality (optional) within the landfill
  5. Quality of pore fluid in the vadose zone
  6. Quality pore gas (optional) in the vadose zone
  7. Quality of groundwater in the saturated zones
  8. Air quality above the landfill, at the gas control facilities, at buildings on or near the landfill and along any preferential migration paths

The indicators of leachate quality and landfill gas quality must be decided after conducting a study relating to the type of the waste, the probable composition of leachate and gas likely to be generated and the geotechnical as well as hydro-geological features of the area.

A monitoring programme must specify:

  • A properly selected offsite testing  laboratory  capable  of  measuring  the  constituents  at  current detection levels
  • A methodology for acquiring and storing data
  • A statistical procedure for analyses of the data

The following instruments/equipment shall be used for monitoring:

  1. Groundwater samples for groundwater monitoring wells.
  2. Leachate samplers for leachate monitoring within the landfill and at the leachate tank.
  3. Vacuum lysimeters, filter tip samplers, free drainage samplers for leakage detection beneath landfill liners.
  4. Surface water samplers for collection of sample from sedimentation basin.
  5. Down-hole water quality sensors for measuring conductivity, pH, DO, temperature in leachate wells, groundwater wells and sedimentation basins.
  6. Landfill gas monitors (portable) for onsite monitoring of landfill gases.
  7. Active and passive air samplers for monitoring ambient air quality.

It is recommended that the location of each type of instrument/equipment be finalized in conjunction with an expert on the basis of the topography of
the area and the layout of the landfill. A minimum of 4 sets of ground water monitoring wells (one up-gradient and three down gradient) for sampling in
each acquifer are considered desirable at each landfill site.

Closure and Post-Closure Maintenance Plan 

A statement on the end-use of landfill site is an essential part of the plan for landfill closure and post-closure maintenance. Some possible uses of closed landfill sites near urban centres include parking area, recreational area etc. a closed landfill should be aesthetically landscaped. A closure and post-closure plan for HW landfills must be evolved and should indicate the following components:

  • Plan for vegetative stabilization of the final landfill cover and side slopes
  • Plan for management of  surface water run-off with an effective drainage system
  • Plan for periodical inspection and maintenance of landfill cover and facilities
  • Plan for post-closure management of leachate and gas ™
  • Plan for post-closure environment monitoring

Criteria for Hazardous Waste Landfills

The term hazardous waste landfill (HW Landfill) is used to designate a waste disposal unit designated and constructed with the objective of minimum impact to the environment. This term encompasses other terms such as “secured landfill”, “engineered landfill”, “waste mounds”, “waste piles” etc.

LOCATIONAL CRITERIA

HW Landfills shall not be located within a certain distance of the following lakes, ponds, rivers, wetlands, flood plains, highways, habitation, critical habitat area, water supply wells, Airports, coastal zone. If it is absolutely essential to site a landfill within the restricted zone, then appropriate design measures are to be taken and prior permission from the SPCB/PCC should be obtained.

  1. Lake or Pond: No landfill shall normally be constructed within 200 m of any lake or pond. Because of concerns regarding run-off of waste contaminated  water,  a  surface  water  monitoring  network  with approval of SPCB/PCC shall be established.
  2. River: No landfill shall be constructed within a 100 m of a navigable river or stream.
  3. Flood Plain: No landfill shall be constructed within a 100-year flood plain. A landfill may be built within the flood plains of secondary streams if an embankment is built along the stream-side to avoid flooding of the area. However, landfills must not be built within the flood  plains  of  major  rivers  unless  properly  designed  protection embakements are constructed around the landfills.
  4. Highway: No landfill shall be constructed within 500 m of the right of way of any state or national highway.
  5. Habitation: A landfill site shall be at least 500 m from a notified habitated area. A zone of 500 m around a landfill boundary should be declared a no development buffer zone after the landfill location is finalized.
  6. Public Parks: No Land fill be constructed within 500 m of public park.
  7. Critical Habitat Area: No landfill shall be constructed within critical habitat areas including reserved forest areas. A critical habitat area is defined as the area in which one or more endangered species live. It is sometimes difficult to identify a critical habitat area. If there is any doubt then the SPCB/PCC shall be consulted be consulted for clarification.
  8. Wetlands: No landfill shall be constructed within wetlands. It is often difficult to identify a wetland area. Maps may be available for some wetlands, but in many cases such maps are absent or are incorrect. If there  is  any  doubt,  then  the  SPCB/PCC  shall  be  consulted  for clarification.
  9. Airport:  No landfill shall be constructed within a zone  around airports as notified by the regulatory authority or  the  aviation authority.
  10. Water Supply: No landfill shall be constructed within 500 m of any water supply well.
  11. Coastal  Regulation  Zone:  No  landfill  shall  be  sited  in  a  coastal regulation zone.
  12. Ground Water table level: No landfill shall be located in areas where the ground water table will be less than 2 m below the base of the landfill.
  13. Other criteria may be decided by the planners in consultation with SPCB/PCC commensurate with specific local requirements such as presence of monuments, religious structures etc.

SITE SELECTION

Hazardous waste landfills should preferably be located in areas of low population  density,  low  alternative  land  use  value,  low  ground  water contamination potential and at sites having high clay content in the subsoil. A HW landfill will be selected following the guidelines published by MoE. The step by procedure will be as follows:

1. Earmarking a’ search area’ taking into account the location of the waste generation units and a ‘search radius’ (typical 5 to 250 km). The search area will be so chosen that it minimizes the number of HW landfills in any region or state.

2. Identification of a list of potential sites on the basis of:

  • Availability of land
  • Collection of preliminary data
  • Restrictions listed in the locational criteria

3. Collection of preliminary data as follows:

  • Topographic Maps: A topographic map will help find sites that are not on natural surface water drains or flood plains.
  • Soil Maps: These maps, primarily meant for agricultural use, will show the types of soil near the surface. They are of limited use as they do not show types of soil a few metre below the surface.
  • Land Use Plans: These plans are useful in delineating areas with definite zoning restrictions. There may be restrictions on the use of agricultural land or on the use of forest land for landfill purposes.
  • Transportation  Maps:  These  maps,  which  indicate  roads  and railways and locations of airports, are used to determine the transportation needs in developing a site.
  • Water Use Plans: Such maps are usually not readily available. A plan indicating the following items should be developed: private and public tube wells indicating the capacity of each well, major and minor drinking water supply line(s),  water intake wells located on surface water bodies and open wells.
  • Flood Plain Maps: These maps are used to delineate areas that are within a 100 year flood plain. Landfill siting must be avoided within the flood plains of major rivers.
  • Geologic Maps: These maps will indicate geologic features and bedrock levels. A general idea about soil type can be developed from a geological map.
  • Aerial Photographs / Satellite  Imagery:  Aerial photographs or satellite imageries may not exist for the entire search area. However, such information may prove to be extremely helpful. Surface features such as small lakes, intermittent stream beds and current land use, which may not have been identified in earlier  map  searches,  can  be  easily  identified  using  aerial photographs.
  • Ground Water Maps: Ground water contour maps are available in various regions which indicate the depth to ground water below the land surface as well as regional ground water flow patterns. Such maps should be collected from Ground Water Boards or Minor Irrigation Tube well Corporations.
  • Rainfall Data: The monthly rainfall data for the region should be collected from the Meteorological Department.
  • Wind Map: The predominant wind direction and velocities should be collected from the Meteorological Department.
  • Seismic Date: The seismic activity of a region is an important input in the design of landfills. Seismic coefficients are earmarked for various seismic zones and these can be obtained from the relevant BIS code or from the Meteorological Department.
  • Site Walk Over and Establishment of Ground Truths:  A  site reconnaissance will be conducted by a site walk-over as a part of the preliminary data collection. All features observed in various maps will be confirmed. Additional information pertaining to the following will be ascertained from nearby inhabitants: (a) flooding during  monsoons;  (b)  soil  type;  (c)  depth  to  G.W.  table (as observed in open wells or tube wells); (d) quality of groundwater and (e) depth to bedrock.
  • Preliminary Boreholes and Geophysical Investigation: At each site, as a part of preliminary data collection, one to two boreholes will be drilled and samples collected at every 1.5 m interval to a depth of 20 m below the ground surface. The following information will be obtained: (i) soil type and stratification; (ii) permeability of each strata; (iii)   strength   and   compressibility   parameters (optional); (iv) ground water level and quality and (v) depth to bedrock. In addition to preliminary boreholes, geophysical investigations (electrical resistivity/seismic refraction/others may be undertaken to assess the quality of bedrock at different sites.

4. Selection of two best ranked sites from amongst the list of potential sites on the basis of the ranking system stipulated by MoE.

5. Environmental Impact Assessment for the two sites for the following parameters: (a). ground water quality; (b) surface water quality; (c) air quality gases, dust, litter, odour; (d) land use alteration; (e) drainage alteration, soil alteration, (f) soil erosion; (g) ecological impacts (h) noise; (i) aesthetics visual, vermin, files; (j) traffic alteration; and (k) others.

6. Assessment of public perception for the two sites.

7. Selection of final site.

8. The above site selection procedure shall not be applicable for location of facility within industrial areas of  State Industrial Development Agencies.

SITE INVESTIGATION CRITERIA

The data collected during site selection is not sufficient for landfill design. To be able to undertake detailed design of a landfill at a selected site, it is essential to characterize the landfill site and evaluate the parameters required for design. It is necessary that all data on preliminary data be collected for site characterization. If some data has not be collected, the same should be obtained before site investigations are undertaken  for  characterization.  The  following  additional  data  will  be collected through a detailed site investigation programme at the chosen site.

A  detailed site investigation programme will comprise of subsoil investigation, ground water/hydrogeological and geological investigation. The output expected from each investigation is listed below:

a. Subsoil Investigation: A detailed investigation plan may be drawn up in consultation with a geotechnical engineer. The output from such an investigation should yield the following:

  • Stratification for subsoil – type of soil and depth.
  • Depth to ground water table and bedrock (if located within 15m of base of landfill).
  • Permeability of various strata beneath the landfill.
  • Strength and compressibility properties of subsoil.
  • Extent of availability of liner material, drainage material, top soil and protective soil in adjacent borrow areas.
  • Subsoil properties along approach road.

A minimum of 3 boreholes per hectare of landfill area upto 15m beneath the base of the landfill shall be drilled and insitu tests as well as laboratory tests shall be performed for permeability, strength, compressibility and classification of soils. In addition, test pits and boreholes  should  be  drilled  at  borrow  are  for  liner  and  cover materials as well as along approach road.

b. Ground Water/Hydrogeological Investigation: A detailed investigation plan may be drawn up in consultation with a ground water specialist or a hydrogeologist. The output from such an investigation should yield the following:

  • Depth to groundwater table and its seasonal variations.
  • Ground water flow direction.
  • Baseline ground water quality parameters – all drinking water quality parameters.

c. Topographical investigation: Construction of a landfill involves a large quantity of earthwork. It is essential to have an accurate topographical  map  of  the  landfill  site  to  compute  earthwork quantities precisely. A map of 0.3 m contour interval is considered desirable.

d. Hydrological Investigation: The objectives of  a hydrological investigation is to estimate the quantity of surface run-off that may be generated within the landfill to enable appropriate design of drainage facilities. If additional run off from areas external to the landfill, this quantity should also be estimated to design interception ditches and diversion channels. Such an investigation shall yield estimates of peak flows. If seasonal rivers or streams run close to the site, hydrological investigation should indicate the possibility of flooding of the site under one in 100 year flood flows. Surface water samples for water quality analysis may be collected from during hydrological studies.

e. Geological Investigation and Seismic Investigation: Geological investigations shall delineate the bedrock profile beneath the landfill base, if not confirmed by subsoil investigations. Geophysical surveys may be designed in consultation with a geologist. In hilly areas or in quarried rocks, geological investigations should indicate the quality of superficial rock, depth to sound rock and the landfill base in the rock mass. Detailed seismic data may be obtained as a part of geological investigations (if required) in seismically active areas.

 

Follow

Get every new post delivered to your Inbox.

Join 86 other followers